Buildingbetter together

Environmental Product Declaration

Prolam H3.2 & H5 MCA Glulam (GLT)

EPD of multiple products, based on a representative product, covering PL8H3M, PL12H3M, PLVL8H3M, PLVL12H3M, PLVL12H3M, PLVL12H5M, PLVL12H5M, PLVL12H5MPP, PLVL12H5MPP, PLVL12H5MPP, PLVL12H5MPP, PLVL12H5MPP, PLVL12H5MPP, PLVL12H3MPP, PLVL12H

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021

Programme:

Programme operator:
Regional programme:
EPD Registration Number:
Publication date:
Valid until:
Version no:

The International EPD® System, www.environdec.com
EPD® International AB
EPD Australasia
EPD-IES-0015904
2024-08-30
2029-08-30

EPD Australasia is fully aligned with the International EPD® System. An EPD should provide current information and may be updated if conditions change. The stated validity is, therefore, subject to the continued registration and publication at www.epd-australasia.com.

Programme Information

EPD Owner

Prolam New Zealand

283 Waiwhero Road, Lower Moutere, Motueka, Tasman, New Zealand, 7175 Website: www.prolamnz.com Phone: +64 3 526 7436 Email: info@prolamnz.com

EPD Programme Operator

The International EPD® System

EPD International AB
Box 210 60
SE-100 31 Stockholm, Sweden
Website: www.environdec.com
E-mail: info@environdec.com

Regional Programme

EPD Australasia

315a Hardy Street, Nelson 7010, New Zealand Website: www.epd-australasia.com Phone: +61 02 8005 8206 Email: info@epd-australasia.com

EPD Developer

Lucille Wagner and Timothy F. Grant Life Cycle Strategies Pty Ltd (Lifecycles)

2/398 Smith Street, Collingwood VIC 3066, Australia Website: www.lifecycles.com.au Phone: +61 03 9417 1190 Email: info@lifecycles.com.au

Facilitator

BRANZ New Zealand

1222 Moonshine Road, RD1, Porirua 5381, New Zealand Website: www.branz.co.nz Phone: +64 800 80 8085 Email: branz@branz.co.nz

Amendments

Amendments to Version 002 include editorial corrections only.

Product category rules (PCR)

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)
PCR 2019:14 Construction Products, Version 1.3.4, 2024-04-30 (valid until 2025-06-20)
c-PCR-006: Wood and wood-based products for use in construction (EN 16485:2014) Version 2019-12-20 (valid until 2024-12-20)

PCR review conducted by

PCR review was conducted by: The Technical Committee of the International EPD System. See www.environdec.com for a list of members. Review chair: Not chair appointed. The review panel may be contacted via the Secretariat www.environdec.com/contact.

Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:

EPD verification by individual verifier

Third Party Verifier: Claudia A. Peña, PINDA LCT SpA,

Approved by: EPD Australasia

Procedure for follow-up of data during EPD validity involves third party verifier:

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

About Prolam

Prolam operates with a strong sense of responsibility to the environment and stands by our commitment to sustainable products and practices. Considering the impact of every facet of our production processes on the environment, we continue to innovate and evolve our products and practices to support our own (and our customers) sustainability goals. As part of this process, we acknowledge the significance of providing clear and independently validated environmental impact data regarding our engineered timber products. An Environmental Product Declaration (EPD) is a reliable, scientifically grounded, independently verified, and standardised approach for conveying the environmental effects of systems. This Environmental Product Declaration (EPD) assesses the environmental impact of Prolam H3.2 and H5 MCA treated beams and posts products.

Prolam Contact:

John Woodman

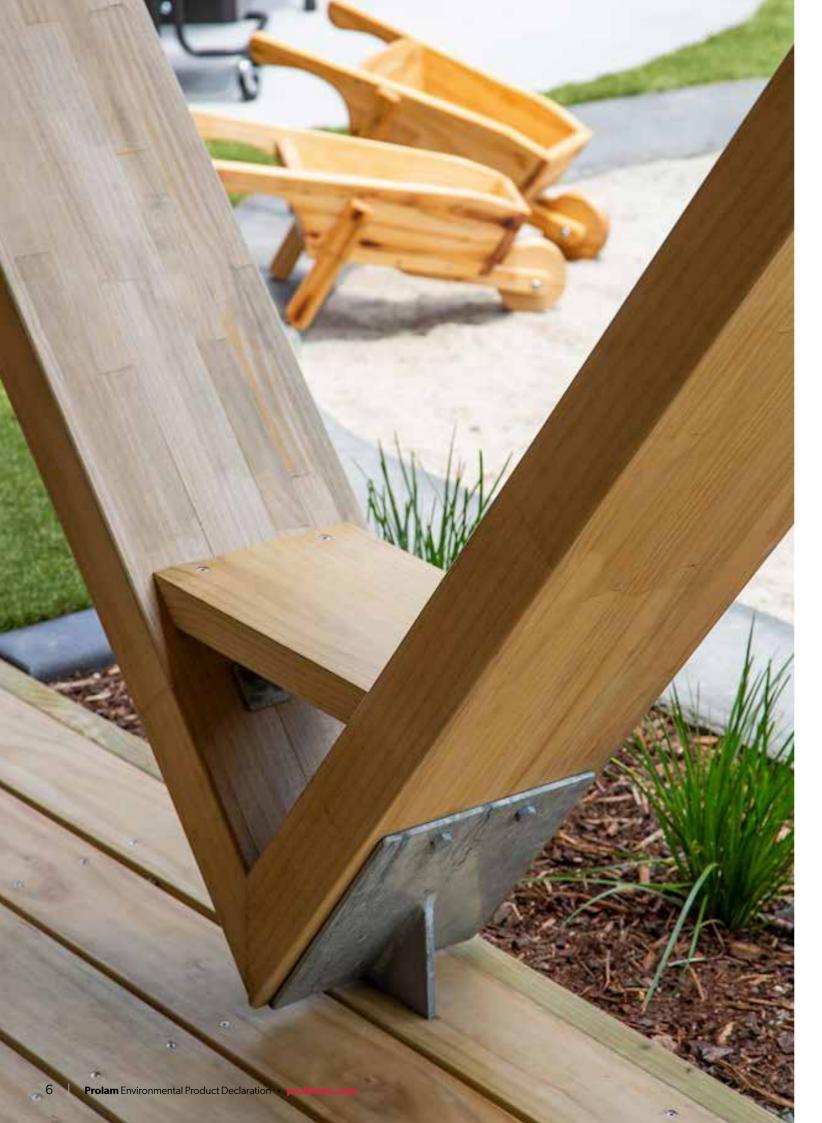
info@prolamnz.com • 03 526 7436

For more information visit:

PL8 BEAMS

www.prolamnz.com/products/beams/prolam-pl8-glulam-beams

PL12 BEAMS


www.prolamnz.com/products/beams/prolam-pl12-glulam-beams

PL8 & PL12 POSTS

www.prolamnz.com/products/posts/prolam-posts

PL12 H5 POSTS

www.prolamnz.com/products/posts/prolam-pl12-h5-posts

About Prolam Engineered Timber Solutions

By **building better together**, Prolam has been empowering engineers, architects, and builders for over 20 years with engineered timber solutions in New Zealand. As a family-owned business, we specialise in design, manufacture and supply of glulam timber beams, posts, and portals, providing optimal design freedom and flexibility, ensuring integrity in our products and services.

We're more than just suppliers; we're trusted advisors and partners, simplifying the construction process for professionals and merchants alike. With a focus on innovation, technical expertise, and responsive service, we facilitate the realisation of architectural visions and trends while meeting compliance standards and environmental regulations.

Our streamlined approach simplifies engineering sign-off requirements, saving time and costs. Leveraging our extensive industry experience, we tackle challenges from design complexity to supply chain logistics. Our commitment to end-to-end ease is evident through online tools, efficient processes, and fast turnaround times.

At Prolam, we envision a thriving building industry supported by high-quality, sustainable products. We prioritise customer confidence and ease, offering leading-edge solutions, exceptional service, and genuine care. With a strong sense of responsibility to our people, community, and environment, we champion sustainability, local jobs, and safety.

This EPD builds upon our commitment to continuous improvement and certification of performance. We continue to implement various sustainable initiatives and introduce new product lines. Through this EPD, Prolam remains dedicated to ongoing enhancements, ensuring that we consistently strive to make our operations more sustainable for today and future generations.

Products description

This EPD covers Prolam H3.2 and H5 MCA treated beams and posts products, referred to as "Prolam H3.2 and H5 Glulam", "Prolam H3.2 and H5 ", "Prolam MCA H3.2 and H5 Glulam" or "Prolam Glulam" in this EPD.

Glue laminated timber (Glulam - ANZSIC code: 1493 – Venner and Plywood Manufacturing; UN CPC code: 31211) is an engineered timber product comprised of multiple layers of timber fused together with adhesives. The thickness of the laminates depends on the intended application and the specific species utilised.

Prolam glulam is range of structural members manufactured from finger-jointed (usually), glue laminated New Zealand grown Radiata Pine timber. Prolam is labelled by identification tags that contain a detailed product specification stapled to the end of each individual member.

Prolam maintains a rigorous internal framework of documented quality processes and procedures, which encompass our primary breakdown, drying, processing, and preservation processes. Our quality assurance program ensures that every piece timber leaving our site is compliant to the applicable New Zealand standards.

Every day structural timber is subjected to mechanical testing to ensure it meets and exceeds the requirements of the following standards.

Standard	Title
AS/NZS 1748 including 3640	Chemical Preservation of Round and Sawn Timber
AS/NZS 1604.1	Specification for preservative timber - Sawn and Round
AS/NZS 1604.5	Specification for preservative timber - Glue Laminated
AS/NZS 1328.1	Glued laminated structural timber
AS 5068	Timber - Finger joints in structural products

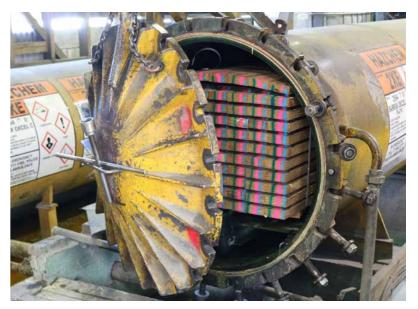
Visual Machine Finish

Bandsawn Finish (Less 3mm each side)

Non-Visual Finish

Sanded and Sealed Finish

Preprimed Finish



Prolam MCA H3.2 and H5 Glulam

Prolam MCA H3.2 and H5 MCA Glulam are available in thicknesses of 42mm to 300mm and widths of 88mm to 595mm. Prolam MCA H5 Glulam are available in width and thicknesses of 88mm to 300mm. Prolam glulam is available in structural grades ranging between PL8 and PL12, which are equivalent to grades GL8 to GL12 given is AS/NZS 1328. See Table 14 to Table 21 in the Appendix for a list of all products available as well as their size and how to calculate their impacts based on this EPD's results. The beams are MCA treated to H3.2 or H5 respectively.

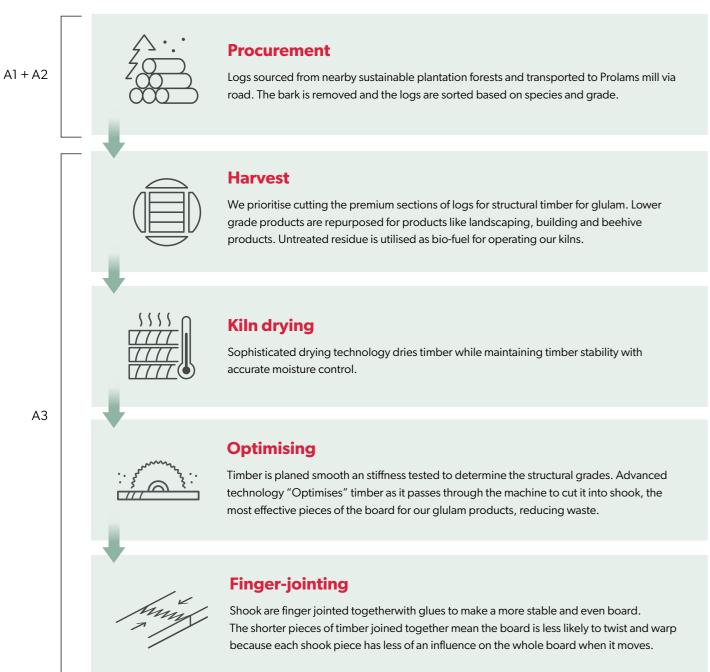
Five finishes can be applied to these products and, as these have minimal impacts on the EPD results, they have been grouped in this EPD. The representative product was chosen to be the highest selling product: Visual machine finish H5 MCA treated post which represents 96% of the Prolam H3.2 and H5 MCA treated beams and posts products sales over the period of reference.

Product applications

Glulam engineered timber products serve both structural and decorative purposes, catering to a wide range of applications in domestic, commercial, and industrial settings. H3.2 treated glulam is suited for external above ground use and H5 treated glulam for external in-ground use. While the manufacturing process for both structural and decorative glulam remains the same, structural products undergo grading against standardised properties such as strength, stiffness, and dimensional stability.

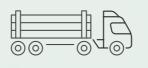
Typical use of glulam is as structural members for lintels, beams, fences, exterior trusses, columns, verandas, pergolas, facades, portals and roofs in light commercial, education and residential projects. Mass timber including glulam is increasingly utilised in mid rise residential apartments and commercial construction projects.

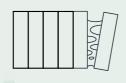
Prolam H3.2 and H5 used to support applied loads as direct substitutes to members specified in NZS 3604, or as subject to specific engineering design (SED) by the way of the <u>Prolam Specifier</u> software, Prolam span tables or by way of calculations prepared by a Chartered Professional Engineer (CPEng).


Technical disclaimer

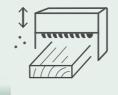
Prolam Glulam products must adhere to the specifications outlined in NZS 3604 or undergo specific engineering design using AS/NZS 1170 and either NZS 3603:1993 or NZS AS 1720.1:2022.

Prolam Glulam should not undergo any dimensional alteration that reduce its structural integrity. The stability and strength depend on maintaining consistent width and thickness. Structural connection methods must comply with NZS 3604, the Prolam structural timber guide, or specific engineering designs. Steel fixings and fastenings in contact with Prolam should be chosen following the guidelines outlined in section 4 of NZS 3604. For exterior use, visual grade must be painted, stained or oiled. Light-coloured paints and stains are recommended, but where a dark colour is selected it must have a light reflectance value (LRV) of greater than 45 %.

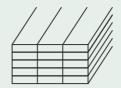



Preservation

Optional Boron, MCA or CCA Preservation treatments are used as appropriate ensuring maximum durability and compliance within or outside the building envelope. (For H1.2 this is after Planing)


Transport

Transport of timber feed-stock from processing facilitating to lamination plant.


Lamination

Lamella are laminated together using MUF or PRF adhesive and "cooked" using a high-frequency RF press. This speeds up the curing process of the glue and increases production efficiency.

Planing

Planing takes Prolam from its "nominal size" down to the final product size giving it a smooth machined finish and an aesthetically pleasing look.

Finishing & Packaging

Optionally Prolam visual finishes are applied (Sanded and Sealed, Pre-primed, Bandsawn). Prolam is packaged using low-density recyclable polyurethane to uphold moisture levels and provide protection during storage and transportation.

А3

Prolam Environmental Product Declaration • prolamnz.com

Product technical specification

The representative product was chosen to be the highest selling product: visual machine finish H5 MCA treated posts which represents 96% of the Prolam MCA H3.2 an H5 Glulam sales over the period of reference.

Table 1 - Physical specifications of Prolam MCA H3.2 and H5 Glulam

Specification	ı	PL8 beams	F	PL12 beams
	Wet Use	Dry Use	Wet Use	Dry Use
Bending (MPa)	15.2	19	20	25
Tension parallel to grain (MPa)	8.0	10	10	12.5
Shear in Beam (MPa)	2.5	3.7	2.5	3.7
Compression parallel to grain (MPa)	19.2	24	23.2	29
Short modulus of elasticity parallel to grain (MPa)	6 400	8 000	9 200	11 500
Short duration modulus of rigidity for beams (MPa)	420	530	610	770

Table 2 - Content declaration of 1 $\rm m^3$ of Prolam MCA H3.2 and H5 Glulam for the representative product (visual machine H5 MCA treated post) and range for the other products included where relevant

Product component	Representative content - Weight (kg)	Range of content - Weight (kg)	Biogenic material weight %	kg C/m³
Pina Radiata wood	550	550	100%	214.64
MUF hardener + resin	0.7	0.7	0%	0
Sylvic R27/4 adhesive	5.6	5.6	0%	0
MCA	9	3.8-9	0%	0
Prime Plus	0	0-0.26	53.97%	0* - 0.14
Rimu Oil Sealant	0	0-0.32	0%	0
Sum = H5, MCA posts	565.3	560.1 – 565.62	97.24 -(97.29)- 98.18	214.64 – 214.78
Post-consumer recycled material, weight %	0	0	n.a.	n.a.

 $^{^{\}star}$ Bold RED numbers refer to the representative product.

Table 3 - Content declaration of the product range's packaging for 1 m³ of Prolam MCA H3.2 and H5 Glulam

Packaging material	Weight (kg)	Weight % (versus the product)	Weight biogenic carbon (kg C/m³) FINAL PRODUCT
Cardboard core	0.27	<1%	0.11
Plastic film	0.52	<1%	0
Labels	0.06	<1%	0.02
Buckles	0.17	<1%	0
Straps	0.42	<1%	0
Marking paint – paint	0.08	<1%	0
Marking paint - steel cans	0.02	<1%	0
Spiral wrap	0.48	<1%	0
Cardboard corners	0.059	<1%	0.013
Total	2.06	<1%	0.140

The product range was tested against the substances in the Candidate List of Substances of Very High Concern in the European Chemicals Agency. No substances on that list are present in concentrations >0.1% of the weight of the products.

OTHER ENVIRONMENTAL INFORMATION

Our dedication to sustainability: Forest & Timber Certification

Prolam operations and sales offices are certified to the chain of custody (COC) standards of the global responsible forest management scheme Forest Stewardship Council® (FSC®), accredited by SCS Global Services. Our FSC licence code is FSC-C181652.

Prolam H3.2 and H5 Glulam is manufactured from radiata pine, sourced from responsibly managed plantations certified to FSC's forest management standard, in addition to other controlled sources within New Zealand.

Upon request, we provide FSC's certified products with FSC's 100% or Mix claim, meeting the requirements of Green Star and various other sustainable procurement policies and programs.

OTHER ENVIRONMENTAL INFORMATION

Green Star and Homestar New Zealand

This EPD complies with the requirements for a product specific EPD under the Green Building Council of New Zealand's Green Star and Homestar sustainable building rating systems:

- Conforms with ISO 14025 and EN 15804
- Verified by an independent third party
- Cradle-to-gate with options and module D (see "Scope of EPD" section for more details on what is included an excluded from the EPD scope)

The use of Prolam may assist projects in New Zealand seeking Green Star or Homestar accreditation with the gaining of credits in these categories:

- Indoor Pollutants / Healthy Materials
- Life Cycle Impact / Embodied Carbon
- Responsible Building Materials
- Sustainable Products
- Construction Demolition Waste
- Earthquake Resilience

OTHER ENVIRONMENTAL INFORMATION

Quality accreditations

Prolam employs a thorough Quality Assurance Framework, encompassing stringent QA procedures. Prolam Glulam undergoes meticulous testing of both the timber and glue bond, in accordance with ISO standards, prior to dispatch. The Prolam quality assurance process has been audited by the EWPAA to ensure compliance with certification requirements.

Health and safety

Prolam is fully committed to upholding New Zealand's health and safety regulations, including the Health and Safety at Work Act 2015 (HSWA) and Health and Safety at Work (Hazardous Substances) Regulations 2017. Our dedication to the health, safety, and wellbeing of our personnel is at the core of our business values, influencing every aspect of our operations. We prioritise cultivating a strong safety culture within Prolam, recognising its utmost importance. Compliance with legal requirements and established industry standards is fundamental and non-negotiable. Prolam provides comprehensive guidelines, along with ongoing training and monitoring, to ensure the safe handling and manufacture of Prolam Beams.

Scope of EPD

This Environmental Product Declaration presents the performance of Prolam H3.2 and H5 MCA treated beams and posts products.

Five finishes can be applied to these products and, as these have minimal impacts on the EPD results, they have been grouped in this EPD.

The system boundary describes the process steps included in the LCA. This LCA will cover 'cradle to gate with options, module C1-C4, module D and optional modules' (modules A1-A5, C1-C4, D). Construction/installation activities of within module A5 and modules B1-B7 are excluded from this study as these activities are best modelled at the final construction/building project level.

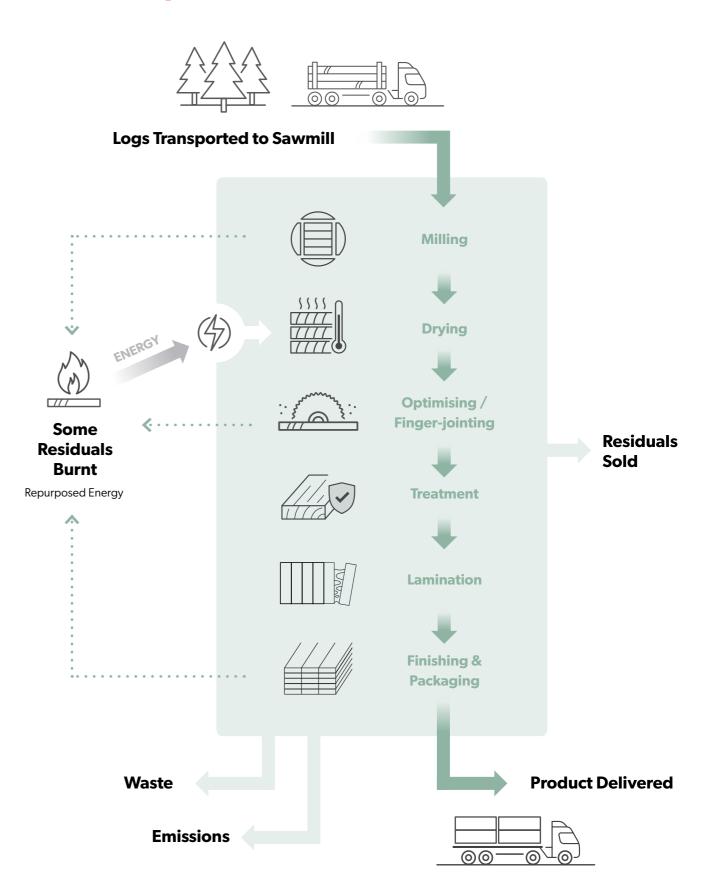

Geographical scope: New Zealand Infrastructure/capital goods: excluded

Table 4 - System boundaries

STAGES	Produ	ıct		Cons Proce	truction ess	Use							End	of life			Resource Recovery
	Raw material supply	Transport	Manufacturing	Transport	Consturction installtion	Use	Maintennce	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste Processing	Disposal	Reuse / Recovery / Recycling potential
Module	A1	A2	А3	A4	A5	В1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	X	Х	X	ND	ND	ND	ND	ND	ND	ND	X	X	Х	X	Х
Geography	NZ/ GLO	NZ	NZ	NZ	NZ	-	-	-	-	-	-	-	NZ	NZ	NZ	NZ	NZ
Specific data used	>90%			-	-	-	-	-	-	-	-	-	-	-	-	-	-
H3.2 and H5 products, all finishes	0.3%			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	0%			-	-	-	-	-	-	-	-	-	-	-	-	-	-

With X = module declared in this study and ND = module not declared in this study.

Procurement, manufacturing and transport to client

Procurement, manufacturing and transport to client

Module A1: Production/extraction of raw materials used to manufacture the products and associated

packaging. This includes the forestry activities for wood raw material as well as all cardboard or paper packaging: fossil fuel extraction activities and all transformation of these raw materials into the

materials bought by Prolam.

Module A2: Transport of each raw material to (and between) the processing sites.

Module A3: Electricity (residual grid mix) and other fuel/inputs of production, transport, and manufacturing at

Prolam processing sites. Waste generated from the manufacturing process include wood shavings and chemical losses. The wood shavings are either burned on site for heat generation (untreated

and MCA treated shavings) or sent to landfill (CCA treated shavings).

Module A4: Transport of the product, and its packaging, to the construction site. An average distance for

truck transport to construction sites was calculated at 750km based on the share of Prolam's sales

between New Zealand's north island and south island.

Module A5: This module was included only to comply with the EPD requirements around the biogenic carbon

balance. Hence, impacts related to the installation/construction activities were not included in the model (believed to be better represented at the specific construction project level) and only the end-of-life processes for packaging, including the release of any stored biogenic carbon, were included here. Lacking detailed information on the packaging components' fate at the construction

site level, these are assumed to be sent to landfill.

End-of-life

Module C:

Demolition of the construction at the end of life of the beam/post (C1): Demolition was modelled as the average 42.28 MJ of liquid fuel per ton of resulting waste required to demolish a building according to Rakesh and Keshava [1].

Transportation of demolished beam/post (**C2**): The average distance from construction site to landfill was determined to be around 100km based on a map of landfill sites in New Zealand [2].

Waste processing (C3): The end-of-life of the product range is known with a high level of certainty to be landfill. Indeed, New Zealand struggles with a lack of alternatives to landfill when it comes to wood waste – which represent about 13% of the total landfill mass [2]. Although downcycling and incineration are technically alternatives, they are not currently in use at wide enough scale in New Zealand to be significant. To be as true to the reality of the system as possible, no alternative end-of-life fates were modelled.

Disposal (landfilling – **C4**): Where available, Rest-of-World Ecoinvent sanitary landfill waste treatment processes were used to model the various materials performance in landfill. The electricity input was adjusted to the New Zealand electricity grid. For the treated wood products, bespoke processes were modelled using the Doka Landfill tool [3]. For the components with biogenic carbon, an artificial release of the biogenic carbon stored within the relevant component was added to the model (so the total biogenic carbon over the product's lifecycle is neutral).

Module D:

Reuse-recovery-recycling potential. This module is empty as no realistic alternative end-of-life to landfilling was identified. This absence of alternative fate modelling results in null values for modules C3 and D.

LCA methodological information

Declared unit

One cubic metre (m³) of H3.2 and H5 beams and posts, MCA treated, all finishes

Table 5 - Product range conversion factors from volume to mass (densities in kg/m³)

Product - finish	Density (kg/m³)
H5 post – visual machine finish	560.30
H5 post – bandsawn	560.30
H5 post - pre-primed	560.56
H5 post - sanded and sealed	560.62
H3.2 beam - non-visual	557.50
H3.2 beam – visual machine finish	557.50
H3.2 beam – bandsawn	557.50
H3.2 beam - pre-primed	557.76
H3.2 beam - sanded and sealed	557.82

Representative product

This EPD is for multiple specific beam products. The structural grade of the wood, namely 8 or 12 does not affect its impacts as it is simply a consequence of the wood quality/characteristics. The different treatments and finishes are the differentiating factor from an environmental perspective. The H5, MCA treated post, visual machine finish was chosen as the representative product as it accounts for 96% of sales during the period of reference. There is no averaging of products.

Background data

Primary data covering the manufacturing processes (A3) was collected and provided by Prolam and represents the primary production data for period September 2022 to August 2023.

The LCA specialist software SimaPro® v9.6.0.1 was used for the LCA modelling. All global background data are taken from Ecoinvent v3.8 allocation recycling cut-off model [4]. Background data for Australian material inputs, energy use, waste treatment and trucks are all sourced from the AusLCI database v2.42 [5]. Additional EN 15804:2012+A4:2019+AC:2021 indicators for resource use, waste categories, and output flows were manually added in relevant processes using data from the allocation recycling cut-off, EN 15804 Ecoinvent database. Background data is less than 10 years old or have been updated within this timeframe.

Electricity modelling

The electricity used at Prowood facilities (module A3) is New Zealand grid electricity. As Prowood does not purchase any renewable energy, the residual market mix for New Zealand was used. The modelled residual mix results in a climate change impact of 0.182 kg CO_2eq/kWh against the GWP GHG indicator.

Other modelling information

In line with the EPD International rules, a cut-off criterion of 1% was applied to the inventory. In accordance with this cut-off criterion, bandsawn finish, visual machine finish, non-visual finish and red dye were excluded from our system boundaries.

It is important to note that this EPD's underlying LCA, like all LCAs, is a model which relies on assumptions and approximations. The ability to use these assumptions and approximations appropriately is what allows us to complete an LCA. We rely on their robustness to provide the closest representation possible of the system under study. This reliance comes with restrictions as regard the interpretation of results.

To identify, transparently communicate and address these limitations, a data quality assessment was carried out on the main contributing processes to assess the data's reliability as well as time-related, geographical and technological coverage. This assessment showed that the most critical aspects of the model were modelled from good to very good quality data, minimizing uncertainty and any risks of misrepresentation as much as feasible within the life cycle analysis exercise inherent limitations.

Prolam's system generates several co-products and the question of allocation must thus be addressed. Part of the co-products generated are used within Prolam as an energy source, the rest is being sent sold. As EN 15804 postulates, the allocation of these co-products that leave Prolam's boundaries is based on economic values (provided by Prolam), as the difference in revenue from these co-products is high.

Environmental impact indicators

Table 6 - Mandatory potential environmental impact indicators according to EN 15804:2012+A2:2019 - EF3.0 package

Indicator	Abbreviation	Description	Characterisation model
Global warming potential – fossil fuels	GWP-fossil	_ Measured in kg of carbon dioxide equivalence (kg CO ₂	
Global warming potential – biogenic	GWP-biogenic	eq.).	IPCC model based on
Global warming potential - land use and land use change	GWP-luluc	This is governed by the increased concentration of gases in the atmosphere that trap heat and lead to increasing global temperatures. These gases are principally carbon	100-year timeframe based on IPCC 2013 [6]
Global warming potential - total	GWP-total	dioxide, methane and nitrous oxide.	
		Measured in kg CFC 11 eq.	
Ozone depletion potential	ODP	This calculates the destructive effects in the stratospheric ozone layer over a time horizon of 100 years.	Steady-state ODPs [11]
		Measured in mol H+ eq.	Accumulated exceedance,
Acidification potential	AP	This assesses the change in critical load exceedance of the sensitive area in terrestrial and main freshwater ecosystems, to which acidifying substances deposit.	CML 2001 non-baseline (fate not included) [12], [13]
		Measured in kg of phosphorus equivalents (kg P eq.).	EUTREND model [14], as
Eutrophication potential – freshwater	EP-freshwater	Expresses the degree to which the emitted nutrients reach the freshwater end compartment.	implemented in ReCiPe
		Measured in kg of nitrogen equivalents (kg N eq.).	EUTREND model [14], as
Eutrophication potential – marine	EP-marine	Expresses the degree to which the emitted nutrients reach the marine end compartment.	implemented in ReCiPe
		Measured in mol N eq.	
Eutrophication potential – terrestrial	EP-terrestrial	This expresses the degree to which nutrients reach sensitive terrestrial environments, resulting in changes in species composition, such as increased invasive species, reed growth, and dieback in tree species.	Accumulated Exceedance based on Seppälä, Posch [12], and Posch, Seppälä [13]
		Measured in kg NMVOC eq.	
Photochemical ozone creation potential	POCP	This measures harmful air pollutant creation by primary pollutants such as nitrous oxides and volatile organic compounds when they interact under the influence of the sun and form chemicals toxic to humans and ecosystems, including ozone.	LOTOS-EUROS [15]
		Measured in mg of antimony equivalence (kg Sb eq.).	
Abiotic depletion potential – minerals & metals*	ADP-minerals & metals	This measures the depletion of minerals based on the concentration of currently economic reserves and rate of de-accumulation.	CML-IA V4.8 [16]
		Measured in MJ Nett Calorific Value (NCV).	
Abiotic depletion potential – fossil fuels	ADP-fossil	This measures the depletion of fossil fuels based on energy content.	CML-IA V4.8 [16]
		Measured in cubic metres of water equivalence deprived $(m^3H2Oeq.)$.	Available water remaining
Water deprivation potential*	WDP	This quantifies the relative available water remaining per area once the demand of humans and aquatic systems has been met.	(AWARE) method [17]
Global warming potential - excluding biogenic uptake, emissions, and storage*	GWP-GHG	kg CO₂ eq.	IPCC model based on 100-year timeframe based on IPCC 2013

^{*} Disclaimer: In this LCA, capital goods and infrastructure have been excluded in accordance with the EPD rules.

Table 7 - Use of resources, waste production, and output flows

Indicator		Abbreviation	Units
RESOURCE USE			
	Use as energy carrier	PERE	
Primary energy resources – Renewable	Used as raw materials	PERM	
	Total	PERT	M], net calorific value
	Use as energy carrier	PENRE	ivij, net caloniic value
Primary energy resources – Non-renewable	Used as raw materials	PENRM	
	Total	PENRT	
Use of secondary materials		SM	kg
Use of renewable secondary fuels		RSF	MJ, net calorific value
Use of non-renewable secondary fuels		NRSF	MJ, net calorific value
Net use of fresh water		FW	m^3
WASTE PRODUCTION			
Hazardous waste disposed		HWD	kg
Non-hazardous waste disposed		NHWD	kg
Radioactive waste disposed		RWD	kg
OUTPUT FLOWS			
Components for reuse		CRU	kg
Material for recycling		MFR	kg
Materials for energy recovery		MER	kg
Exported energy – electrical and thermal		EE	MJ per energy carrier

The indicators presented in Table 8 are voluntary additional indicators that have been included in this EPD. Table 9 lists the outdated indicators of EN15804+A1 which were included here for comparability purposes. The results of these additional indicators are presented in the Appendices. Please note that although the indicators and characterisation methods are from EN15804:2012+A1:2013, other LCA rules (system boundaries, allocation, etc.) are according to EN 15804:2012+A2:2019; i.e., the results of the "A1 indicators" shall not be claimed to be compliant with EN 15804:2012+A1:2013.

Table 8 - Additional voluntary indicators included in this assessment

Indicator	Abbreviation	Units	Characterisation model
POTENTIAL ENVIRONMENTAL IMPACTS			
Particulate Matter emissions	PM	Disease incidence (due to kg of PM2.5 emitted).	SETAC-UNEP [14]
Ionising Radiation – human health**	IRP	kBq U-235-eq.	Human health effect model as developed by Dreicer and Tort [15] update by Frischknecht and Braunschweig [16]
Eco-toxicity – freshwater***	ETPF	Comparative Toxic Unit for ecosystems (CTUe)	USEtox version 2 [17]
Human toxicity – cancer***	HTPC	Comparative Toxic Unit for human (CTUh)	USEtox [17]
Human toxicity – non-cancer***	HTPNC	CTUh	USEtox [17]
Land use related impacts / soil quality***	SQP	Dimensionless	Soil quality index based on LANCA [18]

^{**} Disclaimer: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Table 9 - EN15804+A1 indicators included in this assessment

Abbreviation	Units	Characterisation model
GWP	kg CO₂ eq.	IPCC model based on 100-year timeframe based on IPCC 2007 [19]
ODP	kg CFC 11 eq.	CML-IA V4.1 [20]
AP	kg SO2 eq.	CML-IA V4.1 [20]
EP	kg PO ₄₃₋ eq.	CML-IA V4.1 [20]
POCP	kg C₂H₄ eq.	CML-IA V4.1 [20]
ADPE	kg Sb eq.	CML-IA V4.1 [20]
ADPF	MJ (NCV)	CML-IA V4.1 [20]
	GWP ODP AP EP POCP ADPE	GWP kg CO2 eq. ODP kg CFC 11 eq. AP kg SO2 eq. EP kg PO43- eq. POCP kg C2H4 eq. ADPE kg Sb eq.

Results tables - per declared unit

10 - Core Environmental Impact Indicator Results for 1 m^3 of visual machine finish H5 MCA treated

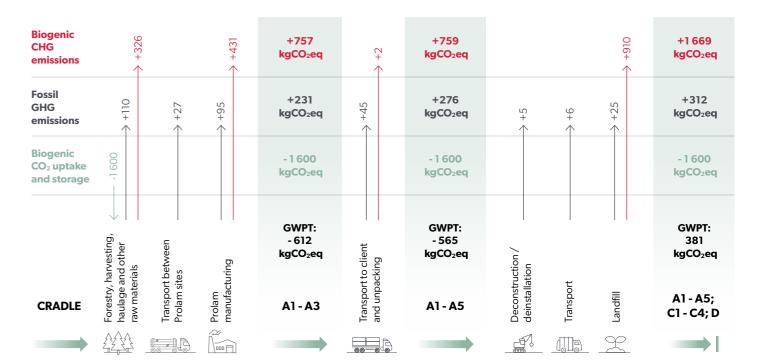
Disclaimers: The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks.

The use of the results of modules A1-A3 without considering the results of module C are discouraged.

Indicator	Unit	Modules A1 - A3	Module A4 Transport to construction site	Module A5 Construction/ installation	Module C1 De-construction/ demolition	Module C2 Transport	Module C3	Module C4 Disposal	Module D
GWP - fossil	kg CO ₂ eq.	231	45.0	2.7E-02	4.5	6.0	0	25.4	0
GWP - biogenic	kg CO ₂ eq.	-843	2.0E-02	2.0	1.2E-03	2.7E-03	0	910	0
GWP - Iuluc	kg CO ₂ eq.	0.24	3.0E-02	1.8E-05	5.0E-04	4.0E-03	0	3.6E-03	0
GWP - total	kg CO ₂ eq.	-612	45.1	2.0	4.5	6.0	0	935	0
ООР	kg CFC 11 eq.	1.7E-05	7.0E-07	2.1E-09	7.0E-08	9.3E-08	0	3.6E-07	0
АР	mol H+ eq.	3.1	0.25	2.2E-04	4.1E-02	3.3E-02	0	01.0	0
EP - freshwater	kg P eq.	0.10	4.1E-03	7.2E-06	1.3E-04	5.4E-04	0	2.0E-02	0
EP - marine	kg N eq.	0.79	6.6E-02	1.0E-03	1.9E-02	8.8E-03	0	0.26	0
EP - terrestrial	mol N eq.	1.01	0.72	7.6E-04	0.21	9.5E-02	0	0.28	0
POCP	kg NMVOC eq.	2.1	0.29	7.0E-04	6.1E-02	3.8E-02	0	0.11	0
ADP - minerals & metals*	kg Sb eq.	1.1E-02	1.8E-04	7.3E-08	1.5E-06	2.4E-05	0	2.7E-05	0
ADP - fossil*	MJ (NCV)	3 147	642	0.54	57.5	85.6	0	304	0
WDP*	m³	131	4.1	2.3E-02	0.15	0.55	0	-76.8	0
GWP-GHG	kg CO ₂ eq.	257	45.0	1.7	4.5	6.0	0	89.5	0

^{***} Disclaimer: The results of this impact category may be highly uncertain in LCAs that include capital goods/infrastructure in generic datasets, in case infrastructure/capital goods contribute greatly to the total results. This is because the LCI data of infrastructure/capital goods used to quantify these indicators in currently available generic datasets sometimes lack temporal, technological and geographical representativeness. Caution should be exercised when using the results of these indicators for decision-making purposes. This being said, infrastructure and capital goods were not included here in accordance with the EPD scheme requirements.

Results Continued


Indicator	Unit	Modules A1 - A3	Module A4 Transport to construction site	Module A5 Construction/ installation	Module C1 De-construction/ demolition	Module C2 Transport	Module C3	Module C4 Disposal	Module D
RESOURCE USE	ш								
PERE	MJ NCV	20 208	0.38	-5.5	0.33	5.06E-02	0	-7 856	0
PERM	MJ NCV	5.1	0	5.5	0	0	0	7 859	0
PERT	MJ NCV	20 214	0.38	1.68E-02	0.33	5.06E-02	0	3.0	0
PENRE	MJ NCV	1824	26.1	09.0	57.9	3.5	0	42.6	0
PENRM	MJ NCV	771	0	0	0	0	0	108	0
PENRT	MJ NCV	2 002	26.1	09.0	57.9	3.5	0	150	0
SM	kg	1.7	1.1E-02	2.2E-04	2.4E-02	1.5E-03	0	5.7E-02	0
RSF	MJ NCV	5.1E-02	1.4E-04	7.2E-06	6.2E-05	1.9E-05	0	1.9E-03	0
NRSF	MJ NCV	0	0	0	0	0	0	0	0
FW	m³	2.9	3.5E-03	5.7E-04	3.1E-03	4.7E-04	0	0.15	0
WASTE FLOWS									
НМБ	kg	3.0	1.9E-02	6.9E-04	2.7E-02	2.6E-03	0	0.14	0
NHWD	kg	311	0.61	2.3E-02	0.53	8.2E-02	0	4.4	0
RWD	kg	8.5E-04	5.7E-06	3.1E-07	6.3E-06	7.5E-07	0	5.4E-05	0
OUTPUT FLOWS	S								
CRU	kg	0	0	0	0	0	0	0	0
MFR	kg	1.1	2.0E-04	7.8E-06	1.8E-04	2.7E-05	0	1.3E-03	0
MER	kg	2.6E-04	1.1E-06	2.7E-08	7.2E-07	1.5E-07	0	5.4E-06	0
33	MJ	0.73	4.7E-03	1.5E-04	3.8E-03	6.2E-04	0	2.8E-02	0

Contribution analysis on climate change

From a climate change perspective, the main driver behind the results is the timber which makes up the majority of the beams by weight. Not accounting for biogenic flows of carbon, the main source of emissions of greenhouse gas from fossil sources (GWPF) are the logistics (111 kg CO_2eq/m^3); energy use (66 kg CO_2eq/m^3) and forestry activities (72 kg CO_2eq/m^3).

The biogenic carbon content of the timber is greater than the sum of all greenhouse gas emissions from fossil sources, making the overall Global Warming Potential results negative for module A1-C2. Please note that although informative, the use of the results of modules A1-A3 without considering the results of the entire module C are discouraged.

This is counterbalanced at end-of-life, as the EN 15804 standard does not allow for the storage of biogenic carbon in a product. As such, the biogenic carbon in the timber and other biogenic materials must be modelled as being emitted during the end-of-life modules (C3-4). When looking at the Global Warming Potential total, the whole system results in an increase of 381 kg CO_2 eg /m³ of Prolam MCA H3.2 and H5 Glulam.

References

Wagner L., Grant T., Life Cycle Assessment of Prowood's product portfolio. Lifecycles, Melbourne, Australia. 05 August 2024.

European Standard, EN 15804:2012+A2:2019+AC:2021-Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. 2022.

European Standard, EN 16485:2014 -Round and sawntimber – Environmental Product Declarations - Product category rules for wood and wood-based products for use in construction. 2014.

EPD® International AB, General Programme Instructions for the International EPD® System, Version 4.0. 2021.

EPD® Australasia Ltd, Instructions of the Australasian EPD Programme; EPD Australasia Limited - A Regional Annex to the General Programme Instructions of the International EPD® System, Version 4.2. 2023.

EPD® Intenational AB, Product Catedory Rules (PCR) - Construction Products, PCR 2019:14, Version 1.3.4. 2024.

EPD® Intenational AB, Complementray Product Category Rules (c-PCR) – Wood and Wood-Based Products for Use in Construction (EN 16485:2014), c-PCR-006 to PCR 2019:14. 2019.

- 1. Rakesh, S. and M. Keshava., A study on embodied energy of recycled aggregates obtained from processed demolition waste, in Nat. Conf. Recent Trends in Architecture & Civil Engineering Towards Energy Efficient and Sustainable Develop., NIT Tiruchirapalli. 2019.
- 2. New Zealand Ministry for the Environment, Official Information Act Decleration - Waste and Landfill Sites in New Zealand. 2021.
- 3. Doka, G., Calculation Tool for waste disposal. 2002-2022, Doka Life Cycle Assessments.

- 4. Weidema, B.P., et al., Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1(v3.7). 2021, The ecoinvent Centre: St. Gallen.
- 5. ALCAS, Australian Life Cycle Inventory Database (AusLCI) Version 2.42.2023.
- 6. IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the International Panel on Climate Change, C.U. Press, Editor. 2021.
- World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project. 2014: Geneva.
- 8. Seppälä, J., et al., Countrydependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator (14 pp). The International Journal of Life Cycle Assessment, 2006. 11(6): p. 403-416.
- 9. Posch, M., et al., The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. The International Journal of Life Cycle Assessment, 2008. 13(6): p. 477.
- 10. Struijs, J., et al., Aquatic eutrophication. ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 2009.
- 11. Van Zelm, R., et al., European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment, 2008. **42**(3): p. 441-453.

- 12. Institute of Environmental Sciences (CML), CML-IA Characterisation Factors Version 4.8, U.o. Leiden, Editor. 2016: Leiden, NL.
- 13. Boulay, A.-M., et al., The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int J LCA, 2018. **23**(2): p. 368-378.
- 14. Fantke, P., et al., Health impacts of fine particulate matter, in Global guidance for life cycle impact assessment indicators. 2016, SETAC. p. 76-99.
- 15. Dreicer, M., V. Tort, and P. Manen, Nuclear fuel cycle: estimation of physical impacts and monetary valuation for priority pathways. 1995, Centre d'Etude sur l'Evaluation de la Protection dans le Domaine Nucleaire.
- 16. Frischknecht, R., et al., Human health damages due to ionising radiation in life cycle impact assessment. Environmental impact assessment Review, 2000. 20(2): p. 159-189.
- 17. Task Force on Toxic Impacts. The UseTox Model, 2010, Available from: http://www.usetox.org/ model/download.
- 18. Horn, R. and S. Maier, LANCA® - Characterization Factors for Life Cycle Impact Assessment, Version 2.5. 2018, University of Stuttgart, IABP-GaBi, Fraunhofer Institute for Building Physics IBP, dept. GaBi.
- 19. IPCC, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007: Geneva, Switzerland.
- 20. Institute of Environmental Sciences (CML), CML-IA Characterisation Factors, U.o. Leiden, Editor. 2013: Leiden, NL.

Appendices

Additional indicators results

The following tables provide results against additional, non-mandatory, impact categories. Table 12 below provides the results of the system against the additional voluntary indicators described above in Table 8.

			construction site installation	installation	demolition				
	Disease incidence	5.2E-05	4.7E-06	3.9E-09	1.1E-06	6.3E-07	0	1.3E-06	0
	kBq U-235 eq.	7.5	0.71	1.1E-03	2.7E-02	9.4E-02	0	0.14	0
	CTUe	7 728	295	3.3	24.1	39.4	0	176	0
*.	CTUh	1.8E-07	1.3E-08	1.2E-11	7.4E-10	1.7E-09	0	4.1E-09	0
<u>ڻ</u>	CTUh	1.5E-05	1.9E-07	2.7E-09	2.2E-08	2.6E-08	0	1.9E-07	0
	Dimensionless	139 614	206	1.2	3.8	94.2	0	307	0
imer:	The results of this env	ironmental impact in	dicator shall be used	d with care as the un	imer: The results of this environmental impact indicator shall be used with care as the uncertainties of the results are high and as there is limited experience with the indicator.	Its are high and as t	here is limited exp	perience with the inc	dicator.

lable 13 - EN15804+A1 Results for 1m3 of visual

compliant with EN 15804:2012+A1:2013.

Indicator	Unit	Modules A1 - A3	Module A4 Transport to construction site	Module A5 Construction/ installation	Module C1 De-construction/demolition	Module C2 Transport	Module C3	Module C4 Disposal	Module D
GWP	kg CO₂ eq.	233	43.2	1.2	4.3	5.8	0	67.8	0
ОДР	kg CFC11 eq.	1.4E-05	5.9E-07	1.7E-09	5.7E-08	7.8E-08	0	3.0E-07	0
АР	kg SO2 eq.	2.3	0.14	1.7E-04	2.9E-02	1.9E-02	0	8.3E-02	0
EP	kg PO ₄₃ . eq.	0.69	3.7E-02	1.2E-03	6.9E-03	4.9E-03	0	0.36	0
POCP	kg C₂H₄ eq.	0.30	9.7E-03	2.8E-04	7.9E-04	1.3E-03	0	1.5E-02	0
ADPE	kg Sb eq.	1.1E-02	1.8E-04	7.3E-08	1.5E-06	2.4E-05	0	2.7E-05	0
ADPF	MJ (NCV)	3 2 5 8	899	0.56	60.5	89.1	0	322	0

Building better together Prolam Environmental Product Declaration • prolamnz.com

lable 12 - Additional Environmental Impact Indicator Results for 1 \mathfrak{m}^3 of visual machine finish H5 MCA treated

Appendices

Product Dimensions

Table 14 - H5M posts, PL8 product codes

					WIDTH (mm)			
		88	112	135	180	220	260	300
	2.4	PLPH5M-100-2.4	PLPH5M-125-2.4	PLPH5M-150-2.4	PLPH5M-200-2.4	PLPH5M-250-2.4	PLPH5M-300-2.4	PLPH5M-350-2.4
	2.7	PLPH5M-100-2.7	PLPH5M-125-2.7	PLPH5M-150-2.7	PLPH5M-200-2.7	PLPH5M-250-2.7	PLPH5M-300-2.7	PLPH5M-350-2.7
(E _	3	PLPH5M-100-3.0	PLPH5M-125-3.0	PLPH5M-150-3.0	PLPH5M-200-3.0	PLPH5M-250-3.0	PLPH5M-300-3.0	PLPH5M-350-3.0
SS	3.6	PLPH5M-100-3.6	PLPH5M-125-3.6	PLPH5M-150-3.6	PLPH5M-200-3.6	PLPH5M-250-3.6	PLPH5M-300-3.6	PLPH5M-350-3.6
THICKNE	4.2	PLPH5M-100-4.2	PLPH5M-125-4.2	PLPH5M-150-4.2	PLPH5M-200-4.2	PLPH5M-250-4.2	PLPH5M-300-4.2	PLPH5M-350-4.2
Ĕ	4.8	PLPH5M-100-4.8	PLPH5M-125-4.8	PLPH5M-150-4.8	PLPH5M-200-4.8	PLPH5M-250-4.8	PLPH5M-300-4.8	PLPH5M-350-4.8
	5.4	PLPH5M-100-5.4	PLPH5M-125-5.4	PLPH5M-150-5.4	PLPH5M-200-5.4	PLPH5M-250-5.4	PLPH5M-300-5.4	PLPH5M-350-5.4
	6	PLPH5M-100-6.0	PLPH5M-125-6.0	PLPH5M-150-6.0	PLPH5M-200-6.0	PLPH5M-250-6.0	PLPH5M-300-6.0	PLPH5M-350-6.0

Table 15 - H5M posts, PL12 product codes

					WIDTH (mm)			
		88	112	135	180	220	260	300
	2.4	PLP12H5M-100-2.4	PLP12H5M-125-2.4	PLP12H5M-150-2.4	PLP12H5M-200-2.4	PLP12H5M-250-2.4	PLP12H5M-300-2.4	PLP12H5M-350-2.4
_	2.7	PLP12H5M-100-2.7	PLP12H5M-125-2.7	PLP12H5M-150-2.7	PLP12H5M-200-2.7	PLP12H5M-250-2.7	PLP12H5M-300-2.7	PLP12H5M-350-2.7
(mm)	3	PLP12H5M-100-3.0	PLP12H5M-125-3.0	PLP12H5M-150-3.0	PLP12H5M-200-3.0	PLP12H5M-250-3.0	PLP12H5M-300-3.0	PLP12H5M-350-3.0
SS	3.6	PLP12H5M-100-3.6	PLP12H5M-125-3.6	PLP12H5M-150-3.6	PLP12H5M-200-3.6	PLP12H5M-250-3.6	PLP12H5M-300-3.6	PLP12H5M-350-3.6
Ž	4.2	PLP12H5M-100-4.2	PLP12H5M-125-4.2	PLP12H5M-150-4.2	PLP12H5M-200-4.2	PLP12H5M-250-4.2	PLP12H5M-300-4.2	PLP12H5M-350-4.2
THICKNE	4.8	PLP12H5M-100-4.8	PLP12H5M-125-4.8	PLP12H5M-150-4.8	PLP12H5M-200-4.8	PLP12H5M-250-4.8	PLP12H5M-300-4.8	PLP12H5M-350-4.8
	5.4	PLP12H5M-100-5.4	PLP12H5M-125-5.4	PLP12H5M-150-5.4	PLP12H5M-200-5.4	PLP12H5M-250-5.4	PLP12H5M-300-5.4	PLP12H5M-350-5.4
	6	PLP12H5M-100-6.0	PLP12H5M-125-6.0	PLP12H5M-150-6.0	PLP12H5M-200-6.0	PLP12H5M-250-6.0	PLP12H5M-300-6.0	PLP12H5M-350-6.0

Table 16 - H5M posts, to obtain volumes in m³ for all available widths and thicknesses, multiply number provided below with post length (available in 2.4; 2.7; 3.0; 3.6; 4.2; 4.8; 5.4; 6.0; 6.6; 7.2m and longer posts can be manufactured as required)

					WIDTH (mn	n)		
		88	112	135	180	220	260	300
	2.4	2.11E-04	2.69E-04	3.24E-04	4.32E-04	5.28E-04	6.24E-04	7.20E-04
_	2.7	2.38E-04	3.02E-04	3.65E-04	4.86E-04	5.94E-04	7.02E-04	8.10E-04
(mm)	3	2.64E-04	3.36E-04	4.05E-04	5.40E-04	6.60E-04	7.80E-04	9.00E-04
SS	3.6	3.17E-04	4.03E-04	4.86E-04	6.48E-04	7.92E-04	9.36E-04	1.08E-03
THICKNE	4.2	3.70E-04	4.70E-04	5.67E-04	7.56E-04	9.24E-04	1.09E-03	1.26E-03
呈	4.8	4.22E-04	5.38E-04	6.48E-04	8.64E-04	1.06E-03	1.25E-03	1.44E-03
	5.4	4.75E-04	6.05E-04	7.29E-04	9.72E-04	1.19E-03	1.40E-03	1.62E-03
	6	5.28E-04	6.72E-04	8.10E-04	1.08E-03	1.32E-03	1.56E-03	1.80E-03

Product Dimensions Continued

Table 17 - H3.2M beams, visual, PL8 product codes

								WIDTH	(mm)						
		88	140	190	225	240	270	290	315	360	405	450	495	540	595
	42	PLVL8H3M -10050	PLVL8H3M -15050	PLVL8H3M -20050	PLVL8H3M -22550	PLVL8H3M -25050	PLVL8H3M -27050	PLVL8H3M -30050	PLVL8H3M -35050	PLVL8H3M -40050	PLVL8H3M -45050	PLVL8H3M -50050	N/A	N/A	N/A
	63	PLVL8H3M -10075	PLVL8H3M -15075	PLVL8H3M -20075	PLVL8H3M -22575	PLVL8H3M -25075	PLVL8H3M -27075	PLVL8H3M -30075	PLVL8H3M -35075	PLVL8H3M -40075	PLVL8H3M -45075	PLVL8H3M -50075	PLVL8H3M -55075	PLVL8H3M -60075	PLVL8H3 -65075
Ê	88	N/A	PLVL8H3M -150100	PLVL8H3M -200100	PLVL8H3M -225100	PLVL8H3M -250100	PLVL8H3M -270100	PLVL8H3M -300100	PLVL8H3M -350100	PLVL8H3M -400100	PLVL8H3M -450100	PLVL8H3M -500100	PLVL8H3M -550100	PLVL8H3M -600100	PLVL8H3 -650100
(mm) ss:	112	N/A	PLVL8H3M -150125	PLVL8H3M -200125	PLVL8H3M -225125	PLVL8H3M -250125	PLVL8H3M -270125	PLVL8H3M -300125	PLVL8H3M -350125	PLVL8H3M -400125	PLVL8H3M -450125	PLVL8H3M -500125	PLVL8H3M -550125	PLVL8H3M -600125	PLVL8H3 -650125
THICKNES	135	N/A	PLVL8H3M -150150	PLVL8H3M -200150	PLVL8H3M -225150	PLVL8H3M -250150	PLVL8H3M -270150	PLVL8H3M -300150	PLVL8H3M -350150	PLVL8H3M -400150	PLVL8H3M -450150	PLVL8H3M -500150	PLVL8H3M -550150	PLVL8H3M -600150	PLVL8H3 -650150
Ξ ີ	180	N/A	N/A	N/A	PLVL8H3M -225200	PLVL8H3M -250200	PLVL8H3M -270200	PLVL8H3M -300200	PLVL8H3M -350200	PLVL8H3M -400200	PLVL8H3M -450200	PLVL8H3M -500200	PLVL8H3M -550200	PLVL8H3M -600200	PLVL8H3
	220	N/A	N/A	N/A	N/A	PLVL8H3M -250250	PLVL8H3M -270250	PLVL8H3M -300250	PLVL8H3M -350250	PLVL8H3M -400250	PLVL8H3M -450250	PLVL8H3M -500250	PLVL8H3M -550250	PLVL8H3M -600250	PLVL8H3 -650250
	260	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PLVL8H3M -350300	PLVL8H3M -400300	PLVL8H3M -450300	PLVL8H3M -500300	PLVL8H3M -550300	PLVL8H3M -600300	PLVL8H:

Table 18 - H3.2M beams, visual, PL12 product codes

								WIDTH	(mm)						
		88	140	190	225	240	270	290	315	360	405	450	495	540	595
	42	PLVL12H3M -10050	PLVL12H3M -15050	PLVL12H3M -20050	PLVL12H3M -22550	PLVL12H3M -25050	PLVL12H3M -27050	PLVL12H3M -30050	PLVL12H3M -35050	PLVL12H3M -40050	PLVL12H3M -45050	PLVL12H3M -50050	N/A	N/A	N/A
	63	PLVL12H3M -10075	PLVL12H3M -15075	PLVL12H3M -20075	PLVL12H3M -22575	PLVL12H3M -25075	PLVL12H3M -27075	PLVL12H3M -30075	PLVL12H3M -35075	PLVL12H3M -40075	PLVL12H3M -45075	PLVL12H3M -50075	PLVL12H3M -55075	PLVL12H3M -60075	PLVL12H3N -65075
(mm)	88	N/A	PLVL12H3M -150100	PLVL12H3M -200100	PLVL12H3M -225100	PLVL12H3M -250100	PLVL12H3M -270100	PLVL12H3M -300100	PLVL12H3M -350100	PLVL12H3M -400100	PLVL12H3M -450100	PLVL12H3M -500100	PLVL12H3M -550100	PLVL12H3M -600100	PLVL12H3N -650100
S	112	N/A	PLVL12H3M -150125	PLVL12H3M -200125	PLVL12H3M -225125	PLVL12H3M -250125	PLVL12H3M -270125	PLVL12H3M -300125	PLVL12H3M -350125	PLVL12H3M -400125	PLVL12H3M -450125	PLVL12H3M -500125	PLVL12H3M -550125	PLVL12H3M -600125	PLVL12H3N -650125
THICKNES	135	N/A	PLVL12H3M -150150	PLVL12H3M -200150	PLVL12H3M -225150	PLVL12H3M -250150	PLVL12H3M -270150	PLVL12H3M -300150	PLVL12H3M -350150	PLVL12H3M -400150	PLVL12H3M -450150	PLVL12H3M -500150	PLVL12H3M -550150	PLVL12H3M -600150	PLVL12H3N -650150
Ŧ	180	N/A	N/A	N/A	PLVL12H3M -225200	PLVL12H3M -250200	PLVL12H3M -270200	PLVL12H3M -300200	PLVL12H3M -350200	PLVL12H3M -400200	PLVL12H3M -450200	PLVL12H3M -500200	PLVL12H3M -550200	PLVL12H3M -600200	PLVL12H3N -650200
	220	N/A	N/A	N/A	N/A	PLVL12H3M -250250	PLVL12H3M -270250	PLVL12H3M -300250	PLVL12H3M -350250	PLVL12H3M -400250	PLVL12H3M -450250	PLVL12H3M -500250	PLVL12H3M -550250	PLVL12H3M -600250	PLVL12H3N -650250
	260	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PLVL12H3M -350300	PLVL12H3M -400300	PLVL12H3M -450300	PLVL12H3M -500300	PLVL12H3M -550300	PLVL12H3M -600300	PLVL12H3N -650300

Appendices

Product Dimensions Continued

Table 19 - H3.2M beams, non-visual, PL8 product codes

								WIDTH	l (mm)						
		88	140	190	225	240	270	290	315	360	405	450	495	540	595
	42	PL8H3M -10050	PL8H3M -15050	PL8H3M -20050	PL8H3M -22550	PL8H3M -25050	PL8H3M -27050	PL8H3M -30050	PL8H3M -35050	PL8H3M -40050	PL8H3M -45050	PL8H3M -50050	N/A	N/A	N/A
	63	PL8H3M -10075	PL8H3M -15075	PL8H3M -20075	PL8H3M -22575	PL8H3M -25075	PL8H3M -27075	PL8H3M -30075	PL8H3M -35075	PL8H3M -40075	PL8H3M -45075	PL8H3M -50075	PL8H3M -55075	PL8H3M -60075	PL8H3N -65075
Ē	88	N/A	PL8H3M -150100	PL8H3M -200100	PL8H3M -225100	PL8H3M -250100	PL8H3M -270100	PL8H3M -300100	PL8H3M -350100	PL8H3M -400100	PL8H3M -450100	PL8H3M -500100	PL8H3M -550100	PL8H3M -600100	PL8H3N -650100
SS (m	112	N/A	PL8H3M -150125	PL8H3M -200125	PL8H3M -225125	PL8H3M -250125	PL8H3M -270125	PL8H3M -300125	PL8H3M -350125	PL8H3M -400125	PL8H3M -450125	PL8H3M -500125	PL8H3M -550125	PL8H3M -600125	PL8H3N -65012
THICKNESS (mm)	135	N/A	PL8H3M -150150	PL8H3M -200150	PL8H3M -225150	PL8H3M -250150	PL8H3M -270150	PL8H3M -300150	PL8H3M -350150	PL8H3M -400150	PL8H3M -450150	PL8H3M -500150	PL8H3M -550150	PL8H3M -600150	PL8H3N -650150
Ŧ	180	N/A	N/A	N/A	PL8H3M -225200	PL8H3M -250200	PL8H3M -270200	PL8H3M -300200	PL8H3M -350200	PL8H3M -400200	PL8H3M -450200	PL8H3M -500200	PL8H3M -550200	PL8H3M -600200	PL8H3N -65020
	220	N/A	N/A	N/A	N/A	PL8H3M -250250	PL8H3M -270250	PL8H3M -300250	PL8H3M -350250	PL8H3M -400250	PL8H3M -450250	PL8H3M -500250	PL8H3M -550250	PL8H3M -600250	PL8H3N -65025
	260	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PL8H3M -350300	PL8H3M -400300	PL8H3M -450300	PL8H3M -500300	PL8H3M -550300	PL8H3M -600300	PL8H3/ -65030

Table 20 - H3.2M beams, non-visual, PL12 product codes

								WIDTH	l (mm)						
		88	140	190	225	240	270	290	315	360	405	450	495	540	595
	42	PL12H3M -10050	PL12H3M -15050	PL12H3M -20050	PL12H3M -22550	PL12H3M -25050	PL12H3M -27050	PL12H3M -30050	PL12H3M -35050	PL12H3M -40050	PL12H3M -45050	PL12H3M -50050	N/A	N/A	N/A
	63	PL12H3M -10075	PL12H3M -15075	PL12H3M -20075	PL12H3M -22575	PL12H3M -25075	PL12H3M -27075	PL12H3M -30075	PL12H3M -35075	PL12H3M -40075	PL12H3M -45075	PL12H3M -50075	PL12H3M -55075	PL12H3M -60075	PL12H3M -65075
Ê	88	N/A	PL12H3M -150100	PL12H3M -200100	PL12H3M -225100	PL12H3M -250100	PL12H3M -270100	PL12H3M -300100	PL12H3M -350100	PL12H3M -400100	PL12H3M -450100	PL12H3M -500100	PL12H3M -550100	PL12H3M -600100	PL12H3M -650100
THICKNESS (mm)	112	N/A	PL12H3M -150125	PL12H3M -200125	PL12H3M -225125	PL12H3M -250125	PL12H3M -270125	PL12H3M -300125	PL12H3M -350125	PL12H3M -400125	PL12H3M -450125	PL12H3M -500125	PL12H3M -550125	PL12H3M -600125	PL12H3M -650125
ICKN	135	N/A	PL12H3M -150150	PL12H3M -200150	PL12H3M -225150	PL12H3M -250150	PL12H3M -270150	PL12H3M -300150	PL12H3M -350150	PL12H3M -400150	PL12H3M -450150	PL12H3M -500150	PL12H3M -550150	PL12H3M -600150	PL12H3M -650150
Ŧ	180	N/A	N/A	N/A	PL12H3M -225200	PL12H3M -250200	PL12H3M -270200	PL12H3M -300200	PL12H3M -350200	PL12H3M -400200	PL12H3M -450200	PL12H3M -500200	PL12H3M -550200	PL12H3M -600200	PL12H3M -650200
	220	N/A	N/A	N/A	N/A	PL12H3M -250250	PL12H3M -270250	PL12H3M -300250	PL12H3M -350250	PL12H3M -400250	PL12H3M -450250	PL12H3M -500250	PL12H3M -550250	PL12H3M -600250	PL12H3M -650250
	260	N/A	N/A	N/A	N/A	N/A	N/A	N/A	PL12H3M -350300	PL12H3M -400300	PL12H3M -450300	PL12H3M -500300	PL12H3M -550300	PL12H3M -600300	PL12H3M -650300

Product Dimensions Continued

Table 21 - H3.2M beams, to obtain volumes in m³ for all available widths and thicknesses, multiply number provided below with beam length (available in 3.6; 4.2; 4.8; 5.4; 6.0; 6.6; 7.2; 7.8; 8.4; 9.0; 9.6; 10.2; 10.8; 11.4; 12.0; 12.6; 13.2; 13.8; 14.4; 15.0m)

								WIDTH	l (mm)						
		88	140	190	225	240	270	290	315	360	405	450	495	540	595
	42	3.70E-03	5.88E-03	7.98E-03	9.45E-03	1.01E-02	1.13E-02	1.22E-02	1.32E-02	1.51E-02	1.70E-02	1.89E-02	2.08E-02	2.27E-02	2.50E-02
	63	5.54E-03	8.82E-03	1.20E-02	1.42E-02	1.51E-02	1.70E-02	1.83E-02	1.98E-02	2.27E-02	2.55E-02	2.84E-02	3.12E-02	3.40E-02	3.75E-02
(mm)	88	7.74E-03	1.23E-02	1.67E-02	1.98E-02	2.11E-02	2.38E-02	2.55E-02	2.77E-02	3.17E-02	3.56E-02	3.96E-02	4.36E-02	4.75E-02	5.24E-02
	112	9.86E-03	1.57E-02	2.13E-02	2.52E-02	2.69E-02	3.02E-02	3.25E-02	3.53E-02	4.03E-02	4.54E-02	5.04E-02	5.54E-02	6.05E-02	6.66E-02
THICKNESS	135	1.19E-02	1.89E-02	2.57E-02	3.04E-02	3.24E-02	3.65E-02	3.92E-02	4.25E-02	4.86E-02	5.47E-02	6.08E-02	6.68E-02	7.29E-02	8.03E-02
呈	180	1.58E-02	2.52E-02	3.42E-02	4.05E-02	4.32E-02	4.86E-02	5.22E-02	5.67E-02	6.48E-02	7.29E-02	8.10E-02	8.91E-02	9.72E-02	1.07E-01
	220	1.94E-02	3.08E-02	4.18E-02	4.95E-02	5.28E-02	5.94E-02	6.38E-02	6.93E-02	7.92E-02	8.91E-02	9.90E-02	1.09E-01	1.19E-01	1.31E-01
	260	2.29E-02	3.64E-02	4.94E-02	5.85E-02	6.24E-02	7.02E-02	7.54E-02	8.19E-02	9.36E-02	1.05E-01	1.17E-01	1.29E-01	1.40E-01	1.55E-01

Building better together

Planning a project?

Our team of experts are ready to assist.

03 526 7436 info@prolamnz.com prolamnz.com

